ECE469: Booting

Aravind Machiry

1/16/2025

Some content copied from: OSE 544

What is booting?

\

A

Booting an OS

o Start the OS and give it control:
Where is OS?

What is OS?
a computer program.

Giving control:
Start executing.

Booting an OS

1. Initialize disk/peripherals.

2. Read the OS code (i.e., binary) and load it into
main memory.

3. Start executing from the first instruction.

What happens, when we turn on
the machine?

.
L L] AMIBIOS(C)2018 American Megatrends, Inc.

ASUS ROG MAXIMUS XI HERO (WI-FI) ACPI BIOS Revision 0602
CPU: Intel(R) Core(TM) 13-9900K CPU @ 3.60GHZ
Speed: 3600MHZ

Total Memory: 32768MB (DDR4-2133)

a. Basic Input Output System.
b. Enables basic device access.

SATAGG_S: Samsung SSD 860 EVO 1TB
SATAGG_6: TOSHIBA HDHE1SO
M.2_1: Samsung SSD 970 EVO S00G8B

Please enter setup to recover BIOS setting.
after setting up Intel(R) Optane Memory or the RAID configuration was built,
SATA Mode Selection must be changed to RAID mode to avoid unknoun issues.
Press F1 to Run SETUP

Phoenix - Award WorkstationBIOS CMOS Setup Utility
Advanced BIOS Features

Anti-Virus Protection |Disabled] _

I Hel
CPU L1 & L2 Cache [Enabled] ey
CPU Hyper-Threading [Enabled] M Teved > Main BIOS Failure with
CPU L2 Cache ECC Checking [Enabled] vl Dual BIOS Single BIOS
Quick Power ON Self Test [Enabled] Allows you to choose 2, : © Backup BIOS Recovery No Backup BIOS
First Boot Device [Floppy] the VIRUS warning 0 A the Skch
Second Boot Device [HDD-0] fcgturc for IDE Hard :
Third Boot Device [CDROM] Disk boot sector

+* L
: c thi 1 2% 2
Boot Other Device [Enabled] protection. If this : L
Single BIOS Failure May

function is enabled Sies . Main BIOS Recovered Require Factory Repair

Swap Floppy Drive |Disabled]
Boot up NumLock Status [On] and someone attempt to
Gate A20 Option [Fast] write date into this

What happens, when we turn on
the machine?

1. Power up.
BIOS initializes basic devices.

3. Afterinitializing peripheral devices, it will put some initialization code to
a. DRAM physical address OxffffO ([fO00:fffO])

b. Copy the code from ROM to RAM
C. Run from RAM The target architecture is assumed to be i8086

[feeo:fffO] Oxffffo: Ljmp $0xT000, $0xed5b
Oxe0eefffe in 2?2 ()

1. What does the code do? Load and run the boot sector from disk
b. Read the 1% sector from the boot disk (512 bytes)
C. Putthe sector at 0x7c00
d. Runit! (set the instruction pointer = 0x7c00)

What!!? Why?

1. Whatis ROM?
Read Only Memory: Memory that contains read-only data -> code for BIOS.

1. What is i8086 and why is the address OxffffO ([f000:fff0])?

Intel 8086 (1978, ~44 years old) -> The seed for Intel x86 processors.
16-bit processor; all registers are 16-bits.
The processor starts at address OxffffO -> Hardcoded!

BIOS assumes that our processor is i8086! Why!?

What is this [f000:fff0]?

e 8086 has 16-bit registers:

a. We can access 1 MB of memory (i.e., Ox0 - Oxfffff) - 20 bit address space
b. How?

e Memory Segmentation: Allows 16-bit processor to access 20-bit address space.
a. Address Format = [Segment:Offset]
b. Final address = (Segment * 16 + Offset) or (Segment << 4 + Offset)

c. [fOO0O:fff0] => OxffffO

Real Mode v/s Protected Mode

® Real mode:
a. Mode that uses physical memory directly.
b. No memory protection.
c. MS-DOS (1981 ~ 2000) runs in this mode.

® Protected mode (Modern processors):

a. Uses virtual memory -> gets translate to physical memory by page tables.
b. Memory protection through MMU.
c. All modern operating systems run in this mode.

e Booting always occur in real mode. Why?

Debugging notes

[000 :e05b] Oxfe@Sb: cmpl $0x0,%cs:0x6ac8
0x0000e@5b in ?? O

0x0000 1000

what are we comparing 0x0 with?

10

Debugging notes

[000 :e05b] Oxfe@Sb: cmpl $0x0,%cs:0x6ac8
0x0000e@5b in ?? O

0x0000 1000

what are we comparing 0x0 with?

cs:0x6ac8 >>> X/W Oxfoac8
f000:6ac8 == Oxf6ac8 Oxfbac8: ?0x00000000

11

Boot from disk

e Load the boot sector (512 bytes) from the boot disk

e Boot sector (Master Boot Record)
a. The 1st sector of the disk partition
b. Ends with Ox55AA: Let's check!

® Load OS at 0x7c00, and run
a. Now the OS takes the control!

12

What should boot sector do?

Load the OS and run!

d.

Processor maximum memory in real mode: 1MB.
OS size can be more than 1IMB!!?

13

What should boot sector do?

e Load the OS and run!
a. Processor maximum memory in real mode: 1MB.
OS size can be more than 1MB!!?

e First, enable Protected Mode (virtual memory support 4GB).

® Then load the OS and run it.

® Boot sectoris 512 bytes, but we should do this in the first 510 bytes!!? Why?

14

Intel memory models

e 8086 (1978, 16-bit), 8088 (1979, 8-bit), and 80186 (1982, 16-bit)
a. Uses 20-bit addressing via Real Mode segmentation

e 80286 (1982), a 16-bit computer

a. Uses 24-bit (16 MB) addressing via Protected Mode

b. Adifferent way of using segment registers (286 is also 16-bit computer)

c. Segment register points to Global Descriptor Table, which sets base (24-bit)

and limit (16-bit)

Base (24-bit) + Limit (16-bit)

-
7

5

Intel Reserved
P s| TYPE | A Base 23,15
Base 15.0
Limit 15.0

1386 Protected Mode

e 80386 (1985, 32-bit)
a. 32-bit processor, all registers are 32 bits, 2232 = 4,294,967,295 = 4GB Space!
b. At that time major computers were equipped only with 4~¥16MB RAM...
c. Segment register now points 32bit base addressable by 32bit offset

e 32bit base + 20bit limit 31 16 | 15 0

Base 0:15 Limit 0:15
® Supports paging (Lab2)

63 56 55 52|51 48|47 40|39 32

Limit

Base 24:31 | Flags 16:19

Access Byte | Base 16:23

16

1386 Protected Mode

e 80486, Pentium (P5), Pentium Il (i686, P6), Pentium !!!
a. Uses the same protected mode with 80386

e Pentium 4 (Prescott, 2004)
a. Supports 64-bit (amd64)
b. Address space: 48-bit (256TB)

e Latest (Coffee Lake and onward)
a. Address space: 57-bit (128PB)

Summary!

Megatrends

Extended Memory

Map code in BIOS at (Over 1MB)

f000:fff0 Load kernel and

run!

BIOS
0xf0000 ~ 0x100000
(960KB ~ 1MB)

Enabling Protected
Mode

Read Master Boot Record VGA

0xa0000 ~ 0xc0000
(MBR) (640KB ~ 768KB)
from the boot disk
and load it at 0x7c00 Low Memory

0x00000 ~ 0xa0000
(0 ~ 640KB)

